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Summary 

A model is presented for the tensile curve of fibres made of linear extended polymers 
measured below the glass transition temperature. In this series model the parameters 
are the chain orientation distribution, the average modulus for shear between the 
chains, the chain modulus and a simple yield condition based on the critical resolved 
shear stress. A good agreement between the experimental tensile curves of poly(p- 
phenylene terephthalamide) and poly(ethylene terephthalate) fibres and the theoretical 
curves has been obtained. 

Introduction 

The tensile curves of fibres made of linear extended chain polymers show great 
similarity below the glass transition temperature. Yield is observed at a strain ey 
between 0.005 and 0.02 strain depending on the overall orientation parameter (1). Up 
to yielding the fibre extension is practically elastic. For larger strains the extension is 
composed of an elastic and a plastic contribution. As the plastic deformation does not 
contribute to the increase of the tensile stress, this causes the typical decrease of the 
slope of the stress vs. strain curve. The stress versus strain curve is also effected by 
the viscoelasticity of the fibre. For the fibres considered in this paper the deformation 
rate dependence of the stress vs. strain curve is small and thus the effect of the 
viscoelasticity can be neglected. Several models have been proposed for the 
description of the fibre tensile deformation (2-7). 

A modification of the classical series aggregate model (4) was proposed by Northolt 
and van der Hout (8) by introducing a new strain definition which implies that the 
chains do not break during fibre extension. As a consequence of this model the 
contributions to the fibre strain are composed solely of the chain extension and the 
chain rotation due to shear. The parameters pertaining to the elastic extension of fibres 
in this model are the chain modulus e c, t h e  average modulus for shear between the 
chains g and the orientation distribution of the chains 0(0). The model has provided a 
satisfactory description for the sonic modulus vs. strain curve, as well as for the 
tensile curve up to fracture after mechanically conditioning of well-oriented poly(p- 
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phenylene terephthalamide) fibres, abbreviated here as PpPTA (9). Subsequently, it 
was shown that this model can also be used to describe the course of the sonic 
modulus versus the strain of medium-oriented cellulose fibres (10). Moreover, it was 
demonstrated that the viscoelastic deformation of PET and PpPTA originates from a 
viscoelastic shearing movement of adjacent chains (9)(11). In a forthcoming paper the 
modified series model has been used as the basis for the description of yielding in 
polymer fibres (1). The critical resolved shear stress law of Schmid (12) is applied to 
the elementary domain of the modified series model, with the result that the yield 
strain as a function of the overall orientation parameter can be calculated. Good 
agreement with the experimental results for a large variety of fibres was obtained. A 
generalization of the series model for fibres with an arbitrary orientation distribution 
has been proposed by Baltussen; a full report of this work is in preparation (13). The 
equations which result from this "continuous chain model" are slightly different from 
those derived by Northolt and van der Hout. 

In this preliminary note we show that the stress vs. strain curve of a polymer fibre can 
be modelled by combining the continuous chain model for the elastic extension of 
fibre with the yielding concept presented in our forthcoming paper on fibre yielding 
(1). The proposed model neglects the various kinds of structural details, such as tie 
molecules, alternating crystalline blocks and amorphous regions, crystalline bridges 
etc, which have played a prominent role in the various models proposed for drawn 
polymers. 

Theory 

A brief outline of the theory 
is presented here. The fibre is 
regarded to consist of long 
and continuous chains which 
do not fracture during 
deformation. Along the chain 
small linear segments of equal 
length are considered. The 
angle between the chain 
segment and the fibre axis is 
denoted by 0, its value at zero 
stress by 00, and the 
orientation distribution by 
p (0 ) .  The i m m e d i a t e  
surroundings .of a segment, 
which include the segment 
itself, are considered to be a 
domain. The chain segment is 
the axis of symmetry of the 
domain. It is assumed that the 
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Figure 1 The stresses acting on a single domain at 
an angle 0 with the applied tension. 

domain has a transverse isotropic symmetry around the chain axis. The mechanical 
properties of the domain are characterized by the chain modulus e c and the average 
modulus g for shear between the chains. As the elastic constants of the domain are 
known in the symmetry coordinate system of the domain, the applied tensile stress of 
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is analyzed in this coordinate system 

cos20 -sin0cos0] 

-sin0cos0 sin20 ] 

(1) 

The stresses acting on a domain are depicted in figure 1. Application of a tensile 
stress of on the fibre results in a strain in the direction of the chain 

% : OJcos20 (2) 
e c 

and a shear deformation 

ol 
Q3:--~-~sin0cos0 (3) 

In ref. 13 it will be shown that, due to the elastic shear deformation of the domain, 
the orientation angle 0 of the chain segment decreases according to the relation 

tan(0- 00) = - ~ sin0cos0 (4) 

Assuming that the elastic fibre strain equals the relative change of the projected length 
of the chain on the fibre axis, it follows that 

+ (cosO >- (cosOo 
e C i c ; 0 -~  

According to the model, the sonic modulus of the fiber is given by 

1 : 1 + _ _ (  sin20 )e  (6) 
Ef e c 2g 

with < sin20 > E the strain 
orientation parameter of the 
chains (8). 

Schmid's law states that for an 
anisotropic material plastic 
deformation starts at a critical 
value of the resolved shear 
stress ay along a slip plane. As 
the shear yield strain of a 
domain has been shown to be 
approximately constant for a 
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Figure 2 The stress strain curve of a single 
domain. 
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large number of polymers (1), a critical shear yield strain, 3'y = 0.025, is postulated 
instead of a shear yield stress, Above the critical shear yield strain the plastic shear 
deformation satisfies a plastic shear law. From the comparison with the experimental 
curves it appears to be necessary to introduce an effect of strain hardening due to the 
increasing plastic deformation, This causes an increase of the elastic deformation 
beyond the yield point. It is proposed that above the yield point the plastic shear 
deformation el30v is proportional to the difference between the elastic shear strain el3 
and the critical shear strain 

/313(P) = 0 [el3 [ ~Yy 

E13~):p(le131-~y) [e131 >% 
(7) 

whereby the parameter determining the amount of plastic deformation p and the shear 
strain Q3 have equal signs. The stress vs. strain curve of the domain is depicted in 
figure 2. The direction of the chain segment in the elastically and plastically deformed 
domain is given by 

tan(0-00) : el3 + el3 (p) 

of 
'~13 = --~sinOcosO 

(8) 

The stress vs. strain curve of a fibre including yield is now computed by combining 
equation (7) and (8) for the orientation angle 0 of the deformed chain segment, and 
equation (5) for the fibre strain. 

Results and discussion 

The stress strain curves of three PpPTA and two semicrystalline poly(ethylene 
terephthalate) (PET) fibres were measured at a test length of 100 mm and a strain rate 
of 10 %/min. The calculated curves were obtained by using a fitting procedure based 
on the equations presented above. In case of PpPTA fibres the orientation of the 
chains was described by a Gaussian distribution function, a value of 220 GPa was 
used for the chain modulus and 2 GPa for the shear modulus (8)(9). In the fitting 
procedure the critical shear strain 3'y and the "depth" of the yield characterized by the 
parameter p were varied, see equations (7) and (8). The results for the PpPTA fibres 
are shown in Figure 3. For the calculation of the tensile curves of the PET fibres an 
affine orientation function was applied, and for the domain properties the values e c = 

125 GPa and g = 1.1 GPa. 
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Figure 3 The observed stress strain curves (a) of three PpPTA fibres compared to the 
calculated curves (b). 
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Figure 4 The observed stress vs. strain curves (a) of two PET fibres compared to the 
calculated curves (b). 
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The affine orientation distribution is given by 15,16 

/9(19) = cos20 ~--~3sin20 

3/2 

(9) 

Figure 4 shows the results and Table 1 lists the values for the parameters which 
furnished the best fit with the experimental curves of the PpPTA and the PET fibres. 
Good agreement for both kinds of polymers is obtained. The essential features of the 
experimental tensile curves, viz. an initial straight part up to yielding followed by a 
decrease of the slope and subsequently a curve with increasing slope, are also 
displayed by the theoretical curves. In case of the PET fibres it should be reminded 
that the used equations are approximations for highly oriented fibres. This causes 
some minor differences with respect to a more rigorous calculation (14). At high 
stresses near the maximum of the slope the observed strain tends to be larger than the 
calculated strain for which presumably slip and fracture of chains are responsible. In 
case of PET fibres, flow processes are initiated during tensile extension at stresses 
near this maximum. In addition to these effects the response of the domain to the 
applied stress may become nonlinear. 

Fibre E0 3'y P 

PpPTA 71 0.03 3 

" 89 0.03 3 

" 124 0.03 3 

PET Diolen 1125T 13 0.025 3.5 

PET Diolen 174S 16 0.025 20 

Table 1 The parameters which have been used for the calculation of the 
theoretical stress strain curves. 

It is remarkable that the proposed model describes the tensile curves rather well both 
for PpPTA and PET fibres despite the large differences in structure, morphology and 
orientation parameter. In the case of semicrystalline polymers such as PET the 
relevant part of the orientation distribution is determined by the amorphous phase as 
the highly oriented crystalline phase in these fibres can hardly contribute to the fibre 
extension. 

In conclusion, it has been demonstrated that the essential features of the fibre tensile 
curve up to the maximum of the slope can be described by the continuous chain 
model, in conjunction with a simple model for plastic deformation of the domain. 
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